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Analysis of Orientationally Disordered Structures. II. Examples: Solid CD4, p-D2 and ND,Br 
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(Received 5 September 1972; accepted 18 November 1972) 

In a number of examples a new method of analysing orientational structures of molecular crystals is 
illustrated. An application to solid heavy methane demonstrates a close analogy to magnetic structures. 
In the case of solid p-D2, structure factors are calculated on the basis of the rotational wave functions 
of the individual molecules and a comparison with neutron diffraction data is performed. Finally 
several solid phases of ND4Br, representative of the ammonium halides, are investigated and a better 
understanding of the orientational order in the NaCl-type phase is achieved. 

I. Introduction 

In the foregoing paper (Press & Hfiller 1973; hereafter 
referred to as paper I) a new method of analysing orien- 
tational structures of molecular crystals has been devel- 
oped. It is the purpose of the present paper to illustrate 
this method by applying it to several molecular solids. 
These examples will also help in the decision as to 
whether the method is useful in a specific case. 

As has been pointed out in paper I, orthonormal 
surface harmonics most favourably apply to the anal- 
ysis of neutron diffraction data from plastic crystalline 
phases. Plastic crystals (Timmermans, 1961; Pawley, 
1972) possess an ordered centre-of-mass lattice and a 
very low entropy change at the melting point. Un- 
fortunately very little neutron diffraction data about 
such solids is presently available, probably because 
Debye-Waller factors and, additionally, rotational 
form factors in general cause an extremely rapid de- 
crease of intensities (paper I), and thus relatively poor 
diffraction patterns are obtained. Yet recently a grow- 
ing interest in plastic crystalline phases and plastic 
phase transitions (Pawley, 1972) has developed and an 
increasing number of measurements may be expected. 

Our interest in the analysis of orientationally dis- 
ordered or ordered structures was aroused by the in- 
vestigation of the solid phases of C D  4 (Press, Dorner 
& Will, 1970; Press, 1972). In our opinion some better 
understanding of the diffraction patterns has developed 
with the application of cubic harmonics. Therefore, as 
a first example, phases I and II of CD4 will be treated 
in § II. In addition, solid methane seems to be well 
suited for illustrating the analogy between orientational 
order--disorder transitions and magnetic systems. In § 
III the low-temperature structure of p-deuterium 
(Mucker, Harris, White & Erickson, 1968) is investi- 
gated. In this simple case an explicit relation may be 
established between the wave function of the free mole- 
cule and the rotational formfactor Fr°t(R). Neutron 
data on phases I, II and IV of NDaBr (Levy & Peterson, 
1953) are reanalysed in § IV: NDaBr has attracted 
much attention in the last few years. The phases under 

consideration are distinguished by particularly simple 
centre-of-mass structures with just one molecule per 
primitive cell. The new method of data analysis pro- 
vides a much simpler description of the orientational 
order in the high-temperature phase than has previ- 
ously been given. 

In paper I the structure factor was written 

F ( Q ) =  ~ exp (i. Q .  R~) 
J x exp [ -  Wj(Q)]. Fr°t(Q) . (1.1) 

Q is the momentum transfer of the neutrons which may 
be expressed in terms of the Miller indices hkl and the 
lattice constant a0 (the examples given in the following 
all have cubic structures) as 

Q = (2zc/a0). (h , k , l ) .  (1.2) 

R~ denotes the (equilibrium) centre-of-mass position 
of the j th  molecule in the cell; exp [ -Wj(Q)]  is the 
Debye-Waller factor. The rotational form factor Fr°t(Q) 
of a molecular shell is expressed in terms of the cubic 
harmonics Kvm(Oo) (vonder  Lage & Bethe, 1947; Alt- 
mann & Cracknell, 1965: 

Fr°t(Q) =4~z ~ iVje'(Q • e) . C~,m . Kt'm(f2O) . (1.3) 
l ' m  

Jv(Q.Q) is a spherical Bessel function of argument Q.0, 
where Q is the radius of the molecular shell under con- 
sideration and the ?~'m are the expansion coefficients of 
the cubic harmonics, f2 o denotes the polar coordinates 
of the scattering vector Q which will be expressed as 

f2o=(h,k , t ) /Vh2+k2+12=(hl ,  kt, lx). (1.4) 

The cubic harmonics Kvm(f2) which are invariant under 
the operations of the tetrahedral group (von der Lage 
& Bethe, 1967) are listed in Table 1 up to the order 
l ' =  8 [the cubic harmonics may also be expressed as 
linear combinations of spherical harmonics (Altmann 
& Cracknell, 1965)]. The index m of Kvm does not 
have the physical meaning of a component of angular 
momentum. The assignment of 2 / '+  1 different num- 
bers to m is therefore arbitrary. For functions having 
tetrahedral symmetry m = 1 has been chosen. 
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Table 1. Cubic harmonics Ka((2) which are 
invariant under the operations o f  the tetrahedral 

group (listed up to the order l= 8) 

.(2 denotes the polar coordinates either of the positional vector 
r or of the scattering vector Q. Functions in square brackets 
indicate functions with normalization factors omitted. 

K01(f2) = 1 
K31(f2) = 1/105xyz 
K4 t(f2) = (5 1/21/4) (x 4 +.y 4 + z 4 _ ~j~, 
K61(-Q) = (2311/2-t5/8) (xZy2z 2 + 2-~ [Karl - 1 / 105) 
Kvt(~2) = - ~  1/1-365xyz(x 4 + y4 + z' - 5/11) 

6s - -  yS z s .~s _ 2 t o  Ks~(-Q)=a--a1/561(xS+ + - - - - [ K 6 , ]  Tx-s[K,~]--½) 

The form factor 1/V~-~ is common to all harmonics 
and has been omitted. Introducing ct,,,=gl,,,/~/4zc, 
where Cot relates directly to the integral scattering 
length of the atoms on a spherical shell, the factor 4zc 
in equation (1.3) cancels and will also be omitted in 
the following. The first few expansion coefficients for 
an octahedron and a tetrahedron of zero librational 
amplitude are given in Table 2 (the integral scattering 
length is a common factor to all coefficients and has 
been extracted). 

Table 2. Expansion coefficients c r o f  a 
tetrahedron with zero librational amplitude and 
expansion coefficients c ° o f  an octahedron with 

zero librational amplitude 

c0rt = 1"0 

c3rl = I/3-5/9 
cr1=-1/7/3 
d,  = 1/~ 
cTrt = - 1/~,65/9 

z = 7i-7 27 

c°, = 1.0 
cOt = 1/21/2 
c°t = 1/26/4 
c °1=  1/'33. 17/8 

I1. Solid methane (CD4) 

(a )  C D  4 I 
In its high-temperature phase (89-7°K > T> 27.0°K) 

CD4 has been found to crystallize in the space group 
Fm3m (Press et al., 1970; Press, 1971, 1972), with four 
molecules in the face-centred cell (lattice constant 
a0=5.85 A at 34.5°K). The methane molecules are 
essentially disordered; the site symmetry m3m is higher 
than the molecular symmetry 43m. Complete disorder, 
that is, an isotropic distribution of the scattering length 
on a spherical shell (radius Q 2 1-09 A) is described by 
the cubic harmonic K0~(.c2). A question of interest con- 
cerns deviations from spherical symmetry, presumably 
due to angle-dependent hard-core repulsion. Hints of 
such deviations (then named 'partial order') have been 
detected in a neutron diffraction study - surprisingly 
at high temperatures (Press et al., 1970; Press, 1972), 
while no visible indications were found at lower tem- 
peratures. 

We have reanalysed our old data in terms of cubic 
harmonics. The structure factor reads 

F ( Q ) = e x p  ( - (uZ)Q2/2 ) .  { b c + 4 .  bo.  [J0(Q. o) 

+ c4t .  J4(O.  Q). K4,(Qo) 
--C61 " i s (Q"  0)" g61(~r~o) + ' "  " ] } .  ( 2 . 1 )  

(u 2) is an isotropic mean-squared amplitude, bc = 0.665 
and bD=0"62 (in units of 10 -lz cm) are the scattering 
lengths of the carbon and deuterium atoms respec- 
tively. A better fit of the data measured at 77 °K is ob- 
tained, with a reduction of the R index from 14.5 to 
11-5 %. The results for the expansion coefficients are 
c4~=0.26+0.04 and c6~=0"0 within the goodness of 
fit. The other previously determined parameters remain 
essentially unchanged, c4~ = 0.26 probably provides an 
upper limit for the modulation of the density distribu- 
tion by K4~(K2). The data at 34.5 °K, on the other hand, 
indicate complete disorder, since both coefficients 
vanish within the limits of accuracy. 

(b) CD4 II 
For phase II of solid CD4(27-0°K >_ T_> 22.1 °K) the 

cubic space group Fm3c has recently been found (Press, 
1971, 1972), with 32 molecules in the face-centred cell 
(a0 = 11.64 A at 24.5°K). The carbon atoms form a 
simple f.c.c, lattice as in phase I. Two different sym- 
metry sites are occupied by the molecules: (i) six of 
eight molecules in the primitive cell, that is, six of eight 
sublattices are ordered [position (c) with point sym- 
metry 42m]; (ii) the molecules on the remaining two 
sublattices are orientationally disordered [positions (a) 
with point symmetry 432]; each molecular site is sur- 
rounded by a shell of antiferro-ordered nearest neigh- 
bours (James & Keenan, 1959) and therefore the octo- 
pole field vanishes. 

The structure may be parametrized in the way de- 
scribed in paper I. The full expression for the structure 
factor is rather lengthy and an explicit formulation 
will not be given. As the site symmetry of the ordered 
tetrahedra is tetragonal, in principle symmetry-allowed 
harmonics in addition to the ones listed in Table 1 
must be considered (e.g. one additional harmonic of 
order 2,4 or 5). On the other hand it may be concluded 
from Raman measurements in phase I1 (Chapados & 
Cabana, 1970), that such a tetragonal distortion of the 
ordered molecules is extremely small and may be ne- 
glected. The site symmetry is probably very nearly cubic, 
that is, the tetragonality of the crystalline field is rather 
weak. In the present example restriction to the har- 
monics with tetrahedral symmetry [Kt,~(O)] is possible 
only in coordinate systems related to the cubic axes 
by a 45 ° rotation around the fourfold axis at each 
molecular site (ordered molecules). 

In the first step of refinement only six parameters 
have been included: scale factor, bo, (u2), 0CD4 and the 
expansion coefficients c31 and c4~ (for the ordered mole- 
cules). With the powder and single-crystal data the 
R values converged to 7.0 and 21"2% respectively, 
which essentially reproduces the values previously ob- 
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tained with 9 parameters• Only the results for the ex- 
pansion coefficients will be given: 

Powder data: c31=1.37+0"10 c41=0'84+0"10 
Single-crystal data: c31 = 1.48 + 0.15 c41 = 0•68 + 0.11. 

In further steps of refinement higher-order harmonics, 
tetragonal distortion, and anisotropic thermal-motion 
parameters have been included. As the R index for the 
single-crystal data did not converge beyond 19 %, the 
final parameters are apparently not very meaningful 
and will not be presented here• Thus, more precise 
data would be very helpful, especially to obtain rig- 
orous evidence as to how far complete disorder can 
be attributed to the molecules at sites of octahedral 
symmetry. 

The analogy between orientationally disordered and 
ordered solids and magnetic systems, pointed out in 
paper I, may be illustrated very nicely with the example 
of CD41 and CD4 II. For simplicity isotropic (harmon- 
ic) Debye-Waller factors identical for all molecules and 
spherically symmetric density distributions for the dis- 
ordered tetrahedra (in both phases) will be assumed. 

The isotropic part in the density distribution of each 
molecule is responsible for the Bragg reflexions in 
phase I. In phase II it contributes to exactly the same 
Bragg peaks, which now are indexed 2h~ 2k~ 2l~. In 
analogy with magnetic systems undergoing paramag- 
netic-to-antiferromagnetic transitions, additional su- 
perlattice reflexions arise in phase II, which are due to 
the orientational ordering. We may study this in more 
detail by writing down the structure factor if(Q) for 
a pair of ordered CD4 molecules which are connected 
by inversion symmetry. 

ff(Q)=[exp (iQ. R1). F~ (Q)  

+exp ( - i .  Q .  R1). F[~(Q)] exp (-(u2)a2/2) 
with (2.2) 

Rx =(¼,0,0). a0 
and 

Q =(2re/a0). (h,k,l). 

rot  The rotational form factor F(I) (Q) reads: 

rot  Fro(Q)=4  bD ~ iv.jv(Q O) ,.m • • • g . l t m  

I ' m  

x K,,m(f2o)= ~ .  if~;)(O). (2.3) 
l '  

Because of inversion symmetry and the parity of the 
cubic harmonics 

ff~i)(Q)=ff~;)(- Q) = (  - 1) v • P~i)(Q) • (2.4) 

Inserting (2.3) and (2.4) into (2.2) we obtain 

f f (Q)=ia[~  {1 + ( -  1)h+v}ff~,~)(Q)] 
l '  

X exp (-(u2)Q2/2) .  (2.5) 

As may readily be seen, the above calculation is exactly 
the same for the two other pairs of ordered tetrahedra 

in the primitive cell. The curly bracket in equation 
(2.5) is non-zero only for even values of the sum (l' +h), 
where h may be replaced by k and l, thus giving rise to 
two different kinds of superlattice reflexions: odd- 
parity harmonics contributing to the density distribu- 
tion of ordered tetrahedra give rise to superlattice re- 
flexions of indices hkl all odd only. On the other hand, 
superlattice reflexions of even indices are due to cubic 
harmonics of even parity only. These also contribute 
to the 'centre-of-mass' reflexions (the ones already pres- 
ent in phase I): solid CD4 II is not strictly antiferro- 
ordered, therefore. 

In the powder pattern of CD4 II (Press, 1971, 1972) 
no superlattice reflexions at smaller scattering angles 
than that of the reftexions 531 have been observed 
(Q531 = 3.15 A-  1). The reason for this is now well under- 
stood: first, reflexions of indices hkl all odd are system- 
atically absent as a result of the diffraction symbol 
F . .  c of the space group, second, the superlattice inten- 
sities arising from even-parity harmonics are propor- 
tional to jZ(Q. o) for small Q values and J4 (Q. o) in- 
creases very slowly with Q. 

III. Low-temperature structure of p-deuterium 

p-Deuterium and o-hydrogen possess two solid phases: 
a hexagonal high-temperature phase and below To= 
4.0°K(p-D2) a cubic low-temperature phase. Theore- 
tical considerations (Raich & James, 1966) as well as 
optical measurements (Hardy, Silveira & McTague, 
1969) suggest an orientationally ordered low-tem- 
perature structure of space group Pa3 (No. 205 of 
International Tables for X-ray Crystallography, 1952)• 
It is widely believed that the rotational quantum num- 
ber J is a good quantum number even in the solid 
state. At low temperatures we are concerned with all 
p-D2/o-H2 molecules in the rotational ground state, 
labelled with J= 1, M--0. The structure presumed 
stable down to absolute zero (Pa3) is described with 
an f.c.c, centre-of-mass lattice and the (rotational, quan- 
tization axes directed along body diagonals. 

A neutron diffraction study ofp-D2 (enriched to 80 %) 
(Mucker et al., 1968) essentially confirmed the picture 
of an orientationally ordered low-temperature structure. 
Yet the presence of only 5 observed reflexions did not 
allow many detailed conclusions. Unfortunately, the 
2 cubic primitive reflexions (210, 211), (i) indicating 
the correctness of the space group and - as we shall see 
later - (ii) being very susceptible to details of the rota- 
tional wavefunctions, were extremely weak and, in 
addition, strongly masked by background scattering 
originating from the aluminum sample chamber. In 
spite of the limited number of experimental data, we 
feel that solid hydrogen provides an extremely simple 
and interesting example for a structure analysis using 
cubic harmonics. Though such an application would 
be straightforward for both solid structures of p-D2, 
discussion will be restricted to the low-temperature 
phase. As for o-H2, everything is quite analogous, ex- 



260 A N A L Y S I S  OF O R I E N T A T I O N A L L Y  D I S O R D E R E D  S T R U C T U R E S .  II 

cept that the rotational energy spacing is wider by a 
factor of two. 

The structure factor is 
4 

F(Q)=  ~ cos (Q.  Rj) .  exp [ -  Wj(Q)]. F{~(Q) (3.1) 
J = l  

with 

F ~ ( Q ) = 2 .  bD ~ ( - 1 )  r .Jzz,(Q. ~o)czt,mK<z{!m(f2o). 
l ' m  

(3.2) 

The sum in (3.1) runs over the unit cell; Rj denotes the 
f.c.c, centre-of-mass coordinates [positions (a) of space 
group Pa3]. The site symmetry of the hydrogen mole- 
cules, according to the space group Pa3, is 3. We thus 
have only one symmetry-allowed harmonic of order 2, 
namely 

K~(~)=/5. (xy + xz + yz) (3.3) 

for one sublattice. There are two fourth-order harmon- 
ics, one of which [K4t(Q)] is totally symrhetric with 
respect to the operations of the cubic point group m3m. 
Since the D-D distance 20=0.7416 A is extremely 
small, there will be little information on higher-order 
harmonics. This is due to the behaviour of the spherical 
Bessel functions j~,(Q.~o) with small argument Q.o. Even 
to obtain information on the harmonics of order 4, 
measurements must be extended far out in reciprocal 
space to Q values of about 8 A- t .  Thus, with the data 
at present available, we may restrict our attention to the 
factor in front of Kza(-Q). If, furthermore, we assume 
that the anisotropy of the harmonic Debye-Waller 
factor is negligibly small (which should hold rather 
well because of the almost spherical electron distribu- 
tion of the molecules), we arrive at a situation strictly 
analogous to the one met in connexion with antiferro- 
magnets. With the above approximations, the struc- 
ture factor reads 

4 

F(Q)=  ~. cos (Q.  Rj) .  exp ( -  <u2>Q2/2). F ~ ( Q )  
j = x (3.4) 

F[~(Q)= 2.  bD[jo(Q . o~)-jz(Q . 0 ) .  c2a . K~z~(no)]. 

(3.5) 
The spherically symmetric part of the density distribu- 
tion is responsible for 'nuclear reflexions', giving rise 
to intensities proportional toj2(Q.o) at f.c.c, reflexions 
only. On the other hand, there are superlattice reflex- 
ions with I F(Q)'  ~j2(Q.0)C2A. Kg~(f2.0), indicating orien- 
tational order. We shall concentrate on this latter con- 
tribution. Fourth-order terms contribute to f.c.c, re- 
flexions as well. 

Accepting J =  1 as a good quantum number, the 
scattering-length density at one molecular site may be 
written down immediately: 

bU)(f2) = 2 bE, u) ,,,u) • ~q.0(n)  * (n)  • " W l , 0  

= 2 .  b o .  [1 +2/ [ /5 .  K2°f(.Q)]. (3.6) 

u> ~q.0(f2) is the wave function of a hydrogen molecule 

with J =  1, M = O .  Inserting C2A=2/V'5 into equation 
(3.5) superlattice intensities smaller by about a factor 
6 than those reported by Mucker et al. (1968) are 
obtained. 

On the other hand, we may follow the description 
chosen by Mucker and coworkers in their calculation 
of the structure factor" they effectively used a rigid 
linear molecule performing only isotropic translational 
motions. With respect to the rotational aspects one is 
faced with a 6 scatterer on a sphere. We may expand 
this ill spherical harmonics and obtain a scattering- 
length density 

bU)(f2) = 2. bo. (1 + 1 5 .  K[~)(-C2) - 1'7)3 • K41(Q) + ' ' "  ).  
(3.7) 

This yields calculated structure factors in agreement 
with the ones reported by Mucker et al. (1968). 

It must be concluded that either the experimental 
data are in error, perhaps for the reasons cited above, 
or that the assumption of J being a good quantum 
number is wrong, i.e. that higher-order terms in the 
Hamiltonian are very important.* In view of the wide 
separation of the J = 3  from the J =  1 state the latter 
possibility appears unlikely; deviations from c2A = 2/]/5 
hardly can be expected to account for a factor {. 

IV. Ammonium bromide 

Another group of orientationally disordered structures 
with properties quite different from those of the 
previously discussed systems, are the ammonium (phos- 
phonium) halides. Arbitrarily, ND4Br has been chosen 
as an example. In the early days of neutron diffraction, 
data on ND4Br were collected by Levy & Peterson 
(1953) and to date represent the only available data on 
all solid phases• These data will be reanalysed in the fol- 
lowing, applying the method developed in paper I. 

ND4Br possesses four solid phases 

I: NaC1 type (125 °C), disordered, space group Fm3m 
II: CsC1 type (T> -38.1  °C), disordered, space group 

Pm3m 
IIl: CsC1 type (slightly distorted) (7" .>-  104°C) anti- 

ferro-ordered, space group P 4 / n m m  
1V: CsCI type, ferro-ordered, space group P-43m. 

The tetragonal distortion of phase III leads to an ad- 
ditional complication which has little to do with the 
orientational structure. Phase IIl therefore will not be 
considered. 

(a) CsCl-type structures 

Phases II and IV have a common centre-of-mass 
structure, with the N atoms at positions (0,0,0) and 
the Br atoms at rj11~ The difference concerns the 1 , 2 2 2 1 •  

* Note added in proof." Recently a detailed neutron-diffrac- 
tion study of cubic p-D2 has come to the knowledge of the 
author. The results confirm the quantum-mechanical picture 
in a convincing manner (R.L. Mills, T.L.Yarnell & A.F. Schuch, 
to be published). 
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orientational ordering of  the NH4 tetrahedra. In phase 
II the tetrahedra are distributed at r andom in two 
equivalent equi l ibr ium orientations. The resultant site 
symmetry is m3m. In phase IV a long-range order of" 
the tetrahedral orientations is established, and these 
are arranged in a ferro-ordered way (site symmetry 
43m). Order-parameter  and orientational fluctuations 
have been described by a pseudo-spin model ;  that is, 
the two different orientations in phase II of  ND4Br 
are identified with the 2 possible states of  a spin S =  
+ ½ (Gar land & Renard,  1966). 

In our concept the structure is parametr ized in such 
a way as to provide a good means  of  analysing the 
critical behaviour  of  the order parameter  in the am- 
m o n i u m  halides. The orientational pdf  of  the D 4 tetra- 
hedra or the corresponding scattering-length density is 
expanded in cubic harmonics  and the following expres- 
sion is obtained for the structure factor in phase IV: 

F(Q)= A(Q) + iB(Q) (4.1) 
with 

A(Q)=bBr .  exp (--(u(T)2)Br. Q2/2) exp [Q(½,½,½) 

x ao(T)] + exp ( -  (u(T)Z)ND4 . Qz/2) 

x {bN+4bo. ~ J z v ( a .  Q). ( -  1)Vezt'm(T) 
1' 

X K2t,m(QQ) } (4.2) 

B ( Q ) = 4 b D .  exp ( - - ( u ( T ) 2 ) N D 4  . Q2/2) 

× ~ A , + I ( Q .  Q). ( -  1)l'c2l'+lm(Z)g2l'+lm(~"~O). 
l" 

(4.3) 

The same expression applies to phase II of  ND4Br, 
with the difference that  B ( Q ) = O .  As the molecular  
sites possess inversion symmetry in phase II, only har- 
monics of  even order contribute in this phase. Because 
of  the tetrahedral site symmetry in phase IV, harmon-  
ics of  odd order, namely 1 = 3,7,9,11 etc., also become 
symmetry-al lowed and will give rise to a finite B(Q). 

In the least-squares procedure the quan t i ty j .  F2(Qnu) 
has been refined (powder data:  j is the multipli t i ty of  
each reflexion), as was originally done by Levy & Pe- 
terson. For lattice constants and scattering lengths the 
following values were used: a 0 ( - 1 9 5 ° C ) = 4 - 0 1  A, 
a0(23°C)=4.06 A and b0=0.62 ,  bN=0.94, bBr=0"68 
(×  10 -~2 cm). The refinement proceeded satisfactorily 
within the limits of  experimental accuracy. The R index 
converges to 4.6 % in case of  phase II and to 4.6 % in 
case of  phase IV, with use of  6 and 9 parameters re- 
spectively. (In the original analysis 6 parameters were 
included yielding R = 5.4 % for phase II and R = 9.0 % 
for phase IV, without application of  a numerical  least- 
squares procedure.) Table 3 quotes the final parameters.  
Tables 4 and 5 compare measured and calculated values 
o f j F  2. Reasonably  precise informat ion on the first few 
expansion coefficients c ,  is obtained. As to be expected 
in phase II, there are eight max ima  of  the D 4 density 
along lines connecting nitrogen atoms with nearest- 

neighbour  bromine  ions ([11 l] directions). The magni-  
tude of  the coefficients corresponds to a l ibrat ional  
ampli tude a , =  11 °. In phase IV the deuter ium atoms are 
much  better localized. A value aL=6 .5  ° at nitrogen 
temperature may  be estimated [see Fig. 2(b) in paper  I]. 
Due to this strong orientational localization, many  
coefficients c ,  are non-zero. Fortunately,  the rate of  
convergence of  the structure factor [equation (4.1) to 
(4.3) is enhanced by the small size of the ND4 ions 
(0 = 1.03 .&) and the high symmetry.  

Table 3. Final parameters obtained in the various 
phases of  solM ND4Br 

NDaBr IV ND4Br II ND4Br I 
Scale factor 0.998 (45) 0.98 (3) 1-08 (8) 
QND4 1"008 (10) 1"036 (10) 1"079 (56) 
(U2)B~ 0.0040 (18) 0.022 (2) 0.045 (19) 
(U2)No, 0-0083 (20) 0.023 (1) 0.061 (15) 
c41 --1-30 (10) --1.07 (5) 0.58 (20) 
c61 1"76 (11) 1"13 (11) 0"6 (1-4) 
c81 -- 0"60 (27) - - 
Ca1 1"75 (7) - - 
C 7 1  - -  1"38 (31) - - 

R index 4"6% 4'6% 5"1% 

Table 4. Neutron diffraction data from ND4Br II 
at 23 °C (Levy & Peterson, 1953) 

hkl jF2o~ "F 2 J c,i~ hkl 
100 17"2_+0-4 17"4 320 
110 65"3 _+ 1"3 65"9 321 
111 3.5 + 0"4 3.6 400 
200 6"0+0-7 6.1 410 

322 
210 0_+1.0 0.3 411 
211 31.2+ 1-6 30-0 330 
220 18.9+ 1-4 17.5 331 
221 ] 7.6+0.8 11.1 420 
300 f - 421 
310 3"6_+ 1"8 3"8 332 
311 2.9_+1.5 2.3 422 
222 11.0-+ 1"7 11.5 

• 2 JFobs fF2a,¢ 
3"6_+ 1"8 2"7 

75"5_+6 74"6 
0+ 1.0 0.1 

5-9+3 4-0 

46.6 + 5 48.0 

9.3_+5 8.6 
35.8 _+ 6 34"9 

5.0+3 5.5 
17.6+3 17-3 
17.3_+3 18-7 

Table 5. Neutron diffraction data from ND4Br IV 
at - 195°C  (Levy & Peterson, 1953) 

hkl • 2 JFobs jF2ca~c hkl jF2obs jF2c.zc 
100 17"9+0-4 18"9 320 5"8+4 10"5 
110 72"3+1"4 75"0 321 163-2+8 162"0 
111 16"1+0.8 14"3 400 0+1 1"2 
200 5-0+0"6 6"5 410 27.4+5 25-7 
210 1"7 + 1"0 0"2 322 
211 87"1+2"4 81"3 411 118 +15 117"8 
220 30-8 + 2"0 28"6 330 
211 76-0+3"5 81"0 331 33 +15 31"1 
300 420 93 +15 94"5 
310 4"1+2"1 2"5 421 41 +15 40"0 
311 13"3+3-5 12"7 332 25 +10 26.8 
222 41 "5 + 8 42"6 

In paper  I criteria were discussed which may  tell 
whether the present approach of analysing structures 
should be applied or not. In our opinion the ordered 
phases of the a m m o n i u m  halides provide l imiting ex- 
amples;  part icularly at very low temperatures, where 
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the addition of 2 more terms up to order l ' =  10 may 
be necessary, the situation becomes less favourable. 
Then it might be advisable not to use many parameters 
to study deviations from a Gaussian distribution on a 
sphere (or any other pdf), but to study other struc- 
tural details such as higher cumulants, correlations 
between centre-of-mass and rotational motions and the 
non-rigidity of the molecules under consideration. 
Nevertheless in such situations the present method may 
still serve a complementary purpose and yield sup- 
plementary information, especially if precise exper- 
imental data are available. One general feature of the 
method should be kept in mind in this context: rather 
direct information on bond lengths is provided; there 
is no need of further corrections which often have to 
be applied when using conventional procedures (Busing 
& Levy, 1964). 

As mentioned before, the above or similar expres- 
sions for the structure factor should be well suited for 
studying the critical behaviour of the order parameter(s) 
at the phase transitions in the ammonium halides. Ex- 
amples of almost continuous transitions (at normal 
pressure) are the transitions from disorder to ferro- 
order in NDaCI(NH4CI) or the disorder-to-antiferro- 
order transition in ND4Br(NHaBr). The quantities to 
investigate are the expansion coefficients of odd order 
c2r+lm or preferably the corresponding coefficients 
A~2r+x) of the cubic rotator functions. The latter are / t i m  e 

defined in equation (3.6) of paper I and the connexion 
with the expansion coefficients of the cubic harmonics 
is given in equation (3.9) of the same paper. 

Often it will be necessary to perform full structure 
analyses at a sequence of temperatures below the tran- 
sition temperature as has recently been done (W. B. 
Yelon & D.G. Cox, to be published). This extra la- 
bour is due to the considerable variation of all tem- 
perature-dependent parameters, which is to be expected 
over the interesting range of temperatures. As far as 
magnetic phase transitions are concerned the situation 
is much simpler, since in general only variations of one 
parameter must be accounted for. 

(b) NaCl-type structure 
In the cubic high-temperature structure of ND4Br 

(and also of the other ammonium halides) the nitrogen 
atoms are at positions (0,0,0) and the bromine atoms 
at positions (½,0,0), i.e. positions (a) and (b) of space 
group Fm3m. The major problem again concerns the 
orientational order of the ND + ions. The situation is 
evident in phases II and IV, as there are eight nearest- 
neighbour Br-  ions surrounding each ND + group and 
there is an orientation where all four protons are close 
to halide neighbours. In phase I this coordination num- 
ber reduces to six. Levy & Peterson (1953) have over- 
come the resultant difficulty by putting the deuterium 
atoms onto several equivalent (low-symmetry) positions 
or circles, both of which are occupied at random. Alto- 
gether eight different models have been tested, three of 
which satisfy the condition of a 'close approach be- 

tween D and Br' (Levy & Peterson, 1953) and also give 
rather low R indices. It has not been possible to achieve 
any further selection between these three models - for 
obvious reasons: if the scattering-length density distri- 
butions corresponding to these models are expanded 
into cubic harmonics, differences show up in higher- 
order terms only. These differences are beyond the 
scope of this analysis because owing to the large values 
of the translational-motion parameters (u2), the ex- 
perimental observations are restricted to Q <4.5 A -1. 
Hence only information on coefficients c2t,1 with 2l' < 6 
is obtained and an analysis in terms of our expansion 
procedure certainly seems preferable. The structure 
factor for phase I of ND4Br is the same as given in 
equation (4.1) and (4.2) apart from constant factors 
due to the different choice of the unit cell (a0 = 6-90/k 
at 200°C). B(Q) vanishes identically because of in- 
version symmetry at the molecular sites. 

As in § IV(a), the quantityjF2(Q~,~,) has been refined 
with unchanged values for the various scattering 
lengths. The R index converges to 5" 1% with inclusion 
of 6 parameters. Measured and observed data are listed 
in Table 6 and the final parameter values in Table 3. 
Estimated standard deviations are rather large, because 
only 10 experimentally observed reflexions were avail- 
able. The ensemble-averaged density distribution pro- 
duces maxima in the direction of the bromine ions 
(positive sign of e4x). Formally the averaged density 
distribution may be visualized as an octahedron per- 
forming librations with amplitudes as large as 20 °. 

Table 6. Neutron diffraction data from ND4Br I 
at 200 °C (Levy & Peterson, 1953) 

hkl jF~ob, jF~.,¢ 
111 6"7+0"1 6"7 
200 11-1 +0"1 11.2 
220 6"8 __+ 0" 1 6.9 
311 0.7+0"35 0"55 
222 4"0+0-3 4-1 
400 5"0+0-2 4-7 
331 1"0+0"5 1"4 
420 3"8 + 0-2 3"4 
422 2"9+0"3 2-5 
620 3-0 + 0"45 3-4 

The author wishes to thank Dr A. Hfiller for many 
stimulating discussions. He is grateful to Dr H. Stiller, 
Dr F. Hossfeld, Dr H. Grimm, Dr H. Stein and Dr 
R. Stockmeyer for helpful discussions and valuable 
comments. 
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Freezing of Myoglobin Crystals at High Pressure 
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A method is described for freezing sperm-whale myoglobin single crystals at a hydrostatic pressure of 
2500 atm. Precession photographs show no damage to the lattice order of the frozen crystals. 

1. Introduction 

Crystallographic phase determinations in protein single 
crystals by means of nuclear y-resonance scattering 
meet with considerable difficulties (Parak, M6ssbauer 
& Hoppe, 1970). One of the problems is the low 
recoilless fraction ( f  factor) of the nuclear-scattering 
process at room temperature. For sperm-whale myo- 
globin it has been shown that at room temperature the 
probability of y-resonance scattering at a S7Fe nucleus 
is only 1% of the theoretical value, which is equivalent 
to a scattering amplitude of 490 electrons (Parak & 
Formanek, 1971). To increase the recoil-free fraction 
one must cool the crystal. Unfortunately, freezing pro- 
tein single crystals is a major problem since the crys- 
tal water expands during the liquid/ice phase transi- 
tion, which usually destroys the single crystal. 

Haas & Rossmann (1970) have published a method 
of freezing lactate dehydrogenase crystals by adding 
certain amounts of sugar to the mother liquid. In this 
way, they obtain during the freezing process some kind 
of glass, which does not rupture the crystal structure. 
The disadvantage of this method is the necessity to 
find for each protein the exact working conditions. 
Their aim was to reduce the radiation damage to the 
crystals during exposure to X-rays. They found that 
the rate of the radiation damage to the frozen crystals 

was ten times less than at room temperature. This effect 
should be expected for any freezing method. 

In the following we describe a method of freezing 
sperm-whale myoglobin crystals. In order to prevent 
the damaging high volume change during the freezing 
process, one may work in a more suitable range of the 
water phase diagram. The so-called ice III and ice IX 
phases, which differ only in the ordering of the protons, 
exist at a pressure between 2100 and 3500 atm. The 
phase transition of water to the ice III phase is accom- 
panied by a volume contraction in contrast to the ex- 
pansion which occurs during the formation of the ice I 
at atmospheric pressure. Besides, the absolute altera- 
tion of the volume is considerably smaller (Whalley, 
Davidson & Heath, 1966; Whalley, Heath & David- 
son, 1968; Riehl, Bullemer & Engelhard, 1969). 

For these reasons, we have frozen sperm-whale my- 
oglobin crystals at a hydrostatic pressure of 2500 atm 
and investigated the crystals at liquid-nitrogen tem- 
perature on a precession camera. The photographs can 
be taken at atmospheric pressure, because the high 
pressure phase is metastable at very low temperatures. 

2. Experimental details 

The high-pressure freezing equipment is shown in Fig. 
1. Part 6 of Fig. 1 is removed at the beginning of the 


